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Generative Computer Assisted Instruction
and Artificial Intelligence

INTRODUCTION

As has often beer noted (e.g., Carbonell, 1970a; Uttal, Pasich, Rogers, &
Hieronymous, 1969), traditional fraﬁe-qriented computer-assisted instruction
does not make full use of the Eapabilities of the comp.te~. In frame-oriented
CAL students are presented prestored teit and text-related quesEions. Althougt
complex branching strategies may be employed, frame-oriented CAI i; basicelly a
mechanized version of a programmed text. As such it makes maximal use of the

cgmputer's capacity for storing large amounts of data, but minimal use of

the computer's logical capabilities.

Certain modes ¢f computer- 2ssisted instruction, such as tutorial and
v

drill-and-practice, have been successfully implemente& in frame-oriented

-

environments (Rockart & Scott Morton, 1975). But frame:o:iented systems :

cannot effectively handle other forms of CAI applications, such as those
supporting problem sglving activities or explorations of social or physical
system simulations. These forms require a program which can do more than
literal manipulation of text in sequences predetermined by the program's
author; they require a system which can adapt to spécific,\unanticipated
interactions with the student. -

.
The class of CAI programs termed "generative' encompasses systems which -
, prog g

can interact responsively in less predictable modes of CAI, like problem
solving or computer simulations. Through programmed procedures, generative
systems bring together elements of data bases to construct, for example,
answers to questions posed by the student, segments of instructicnal text,

questions directed to the student, or answers to computer constructed questions.

A trend in the development of generative CAI has been to develop systems
which act much like intelligent human tutors. Since a goal of artifical
intelligence research is "to construct programs which exhibit what we call
intelligent behavior' (Feigenbaum & Feldman, 1963), Al is the breeding
ground for techniques applied in generative systems which aid in the

- . .
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achievement of this tutor-like environment. Imple&entation of techniques

from AI lias produced a new level of sophistication in CAT applications,
providing environments only partially described by the term '"generative."

A more descriptive designation for these systems, stemming from their emphasis

on tutor modaling, is "responsive" computer-assisted instruction.
PERSPECTIVE

In 1969, Uttal et al. described generative programs as those which_ use
"algorithms to generate problems, answers, diagnostics, and remedial materials."
At the time, they felt that not all subject domains were amenable to generative
devefopment, just those conducive to algorithmic manipulation, such as
"matﬁ;matical course materials, other mathematically oriented subjects like
the physical sciences, and some special subject matters such as chemistry or
logic in which there is a formal system describing the relations between
and among parts.” In -particular, they excluded '"verbally oriented subject

matter as pcssible items for a generativeecurriculum."

A year later, two systems emerged which indicated that verbally oriented
subject matter could be taught in a generative environment (Carbonell, 1970a;

Wexler, 1970). Both were tutors of geography. Though applicable to other

subject areas, both were oriented toward the tutoring of factual knowledge.

The systems used structured information networks to store key concepts
in their subject domain. But the locus of the meaning of those concepts
differed between the programs. Meaning in Wexler's system resided, for the
most part, in a prestored set of incomplete sentences. Concepts were
retrieved from the network to appropriately complete the statements, which

were then transmitted to the student.

The emphasis of meaning in Carbonell's system resided in the network
itself. Following the work of Quillian (1968) in natural language comprehension,
Carbonell constructed a detailed network of interrelated concepts stored in '
attribute-value (e.g., Capital-Santiago) format. Facts abouF a geographical

concept (e.g., Argentina) could be inferred from the netwo.k by procedures
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which interpreted a list of properties associated with the concept, each
property consisting of an attribute and its value or set of values. The
values in turn had their own associated property lists, allowing for multiple
embeddiné of information. No pieces of teit or questions were part of the
natwork. Procedures, almost completely independent of the subject matter

to which they applied, were capable of searching the -twork to construct

the output the system presented to the student.

Although Wexler proviéed a generative tutor in a subject considerably

.1éss formal than those Uttal and his associates thought possible, his system

was not a theoretical departure from the rotion of algorithmic generation

held by these investigators. On the other hand, Carbonell's sigﬁified a new
direction in the evolution of geA@rative programs. By endowing SCHOLAR, as

the system was called, with a representation of its subject matter in the form
of a network and procedures which understood it, Carbonell took the step

toward providing CAI programs with independent problem solving and question
, answering expertise. Carbonell borrowed techniques from artificial intelligenéé,
specifically from the area of natural language comprehension, to give SCHOLAR:

some 'understanding' of geography.

Since SCHOLAR's development, applications of AI in CAI have continued,
with exemplary programs includipg a logic teaching system (Goldberg, 1973),
a system for teaching integration (Kimball, 1973), a tutor of a text-editing
system (Grignetti, Gould, Hausmann, Bell, Harris, & Passafiume, 1974), a
laboratory in electronic troubleshooting (Brown, Burton, & Bell, 1974a), a
tutor of a machine language (Koffman & Blount, 1974, 1975), and a tutor of
BASIC (Barr, Beard, & Atkinson, 1975a). The following statement by Brown,
Bell, and Zcybel (1973) reflects the underlying philosophy of this approach:

It seems almost axiomatic that the more a CAI system
'understands' about its subjeét area, the more effective
a teaching system it will be, Even more important is the
fact that systems which possess such understanding can
provide a qualitatively new level of interaction with

the student. ’




STATE-OF-THE-ART AND ARPA RESEARCH

ARPA has supported research .in the development of responsive CAI
environments, The research has produced both practical and theoretical
accomplishments. On the practical side can be listed the development of
tutors which have the potential to effectively and efficiently train
military persornel. On the theoretical side can be listed advances in the

modeling of subject matter, the modeling of the learner's state of knowledge,

, and the modeling of teaching strategies. The following ARPA supported

projects will be discussed as they relate to these accomplishments:

(1) The work of Brown and associates at Bolt, Beranek, and Newman,

Inc., on instructional enviromments for problem solvdng and

-~

gaming. s

—ca

(2) The work of Collins and associates, also at BBN, on research\i
with SCHOLAR-like systems.
(3) The work of Atkinson and associates at Stanford University on

an instructional :ystem for teaching the BASIC programming

language. .
and (4) The work of Norman and associates at the University of
CaliforniJ at Irvine on humar information processing.

I )
Modeling the Subject Matter

The capability of an automated tutor to respond to the needs of its
student is greatly enhanced if the tutor can interpret and pertinently reply
to unanticipated student input. If the tutor is capable of this, the student
can, for example, ask for clarification of some previously discussed point or
fill a critical gap in his knowledge by querying the tutor. Furthermore,
the range of student answers to questions the computer poses need not match
a finite set of prestored statements; the computer can provide pertinent

responses to many unforeseen answers.

Programs which can flexibly and intelligently handle unanticipated input
generally require a representation of the content of their subject area to

which they can turn to interpret the meaning of the input and to construct

10
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a relevant response (Nilsson, 1974). This requirement has inspired work

|
|
|
|

on modeling representations of knowledge for use in automated tutors.

Subject matter modeling)has typically been directed at modeling specific

subject areas, but more general representations have been attempted

(e.g., Kingsley & Stelzer, 1974).

SOPHIE, a tutor developed by Brown and coworkers, can meaningfully
react tc unanticipated jdeas concerning what is wrong with a faulted piece
of electronic equipment (Brown & Burton, 1975). Basic to SOPHIE's
ability to do this are several representations of the subject area, each
of which supports different aspects of SOPHIE's interactions with students.
Included in the representz ions called upon by SOPHIE are (2) a semanticallv-
centered parser of student input, (b) a nétwork which encodes time-invariant
factual knowledge about the instrument's circuit, (c) a model which can
simulate the behavior of the instrument, and (d) an assortment of heuristicQ
procedures, each of which specializes in inferring specific types of information
from the results of the circuit simulation. Before discussing these represen-

tations in more detail, a description of the purpose and appearance of

SOPHIE's tutorial interaction will be given.

SUPHIE's goal is to teach the qualitative understanding of electronic
circuits necessary for troubleshooting. To this end SOPHIE interacts with
the student while tlie student debugs a malfunctioning piece of electronic
equipment. Its success at supporting this interaction has led to SOPHIE's
evaluation as the most impressive artifical intelligence-based system yet

developed (Bunderson & Faust, 1976). ¢

The tutorial begins with the presentation of a schematic of the

cdmponent's circuit and a partial specification of the equipment's symptoms

for some particular but unknown fault. The student is then permitted to
examine the behavior of the insfrumen: by requesting certain measurements of
its output under various control settings or requesting tests at internal
points of the circuit. The student can ask SOPHIE specific questions abovt
the implications of a measurement. He can ask SOPHIE advise about what to
consider next given what has thus far been discerred about the circuit.

SOPHIE can evaluate a student's hypothesis about what is wrong with the
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circuit, taking into consideration all the information the student suculd
have bheen able to derive from his previous measurements. SOPHIE can also
judge the merits of any particular measurement request in view of the prior

sequence of méasurements the student has made.

A portion of a SOPHIE-student interaction tsken from Brown, Burton,
Bell and Boubrow (1974) is presented in Figure 1. Although the dialogune is
difficult to fully apprecfate without some prior knowledge cf electronic
circuits, it should still provide some idea of how flexible and seemingly
jntelligent SOPHIE is.

Figure 1

Segment or a SOPHIE-student interaction taken from a longer
protocol presented in Brown, Burton, Bell, and B.urow (1974).
Statements entered by the student are underlined.

WHAT IS THE BASE EMITTER VOLTAGE OF THE VOLTAGE LIMITING TRANSISTOR?
THE BASE EMITTER VQLTAGE OF -Q5 IS -.f37 MILLIVOLTS.

WHAT ABOUT FOR THE CURRENT LIMITING TRANSISTOR?

THE BASE EMITTER VOLTAGE OF Q6 IS .349 VOLTS.

WHAT SHOULD IT BE?

IN A WORKINé CIRCUIT THE BASE EMITTER VOLTAGE OF Q6 IS .593 VOLTS.
REPLACE Q6.

I AM GOING TO ASK YOU SOME QUESTIONS ABOUT HOW Q6 IS FAULTED.
ARE ANY JUNCTIONS SHORTED? .

I DON'T KNOW.
" ARE ANY TERMINALS OPEN?
YES.

WHICH TERMINALS AKE OPEN?
THE BASE.
Q6 IS NOT FAULTED IN THAT MANNER. Q6 NOT REPLACED.
IS IT POSSIBLE THAT Q6 HAS AN OPEN BASE? ‘
IS THE COMPLETE FAULT MODE EB/EC/BC = OP/OK/OP WHAT YOU INTENDED?
SURE.
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WHEM THE SETTINGS WERE: CC=1.§, CR=HEGH, LOAD=2f, VC=1.§, VR=HIGH

THAT FAULT CONFLICTS WITH THE FOLLOWING MEASUREMENT. YOU OBSERVED

THAT THE OUTPUT VOLTAGE WAS 11.7 VOLTS. IF Q6 HAD FAULT MODE

EB/EC/BC = OP/OK/OP IT WOULD BE 23.9 VOLTS. IN A WORKING CIRCUIT

IT IS 19.9 VOLTS. ALSO, THAT FAULT CONFLICTS WITH THE FOLLOWING
MEASUREMENT. YOU OBSERVED THAT THE BASE EMITTER VOLTAGE OF Q6 WAS .2349
VOLTS. IF Q6 HAD FAULT MODE EB/EC/BC = GCP/OK/OP IT WOULD BFE .712 VCLTS.

IN A WORKING CIRCUIT IT IS .593 VOLTS. THAT FAULT DOES NOT EXPLAIN ANY OF
THE SYMPTOMS YOU OBSERVED pul .IT IS CONSISTENT WITH THE VALUES FOR THE BAS~
EMITTER VOLTAGE OF Q5 AND THE VOLTAGE AT N1.

In SOPHIE, student input fe converted to executable LISP code by a
semantically based pzrse’ . .+wwn, Burtom, Bell & Boubrow, 1974; Burton,
1974); evaluation of the code provides the data which comprises SOPHIE's
response to the input. A semantically based ‘parser is to be distinguished
from a syntactically based parser (like, for example, an augmented transition
netwerk parser (Woods, 1970)). In syntactic parsers, sobstrings of input are
assoniated with syntactic‘categories such as "noun", "verb", "noun phrase"

r "adjective". In semantic parsers substrings are related to conceptual

categories such as (in the case of SOFHIE) "a 1 fquest for‘information",

"a dommand to change a control setting', "a measurement" or "a locav i".

In general a semantic parser could lead to a phenomenal proliferation
of categories to be captured by the grammar. But in the area of electronic
troubleshooting the number of concepts is 1imited enough and the_ constraints that
interrelate them are well defired epaugh to make the use of such a parser
feasible. The constraints built into the grammar between the various
conceptual entities which SOPHIE must comprehend represents c¢.? dimension of

SOPHIE'S multidimensional "knowledge" of its subject matter.

SOPHIE derives its factual knowledge about the circuit from a network

- representation of this information The network stores only time-invariant

infrrmation such as the specifications of circuit components or definitions
of circuit terminology. The structure of the network is in the tradition of
Quillian (1969). SOPHIE calls upon the network when it answere factual
questions about the circuit posed by the student. The network is also called
upon by SOPHiE's heuristic procedures and natural language processor when

factual information is required for their operation.

13
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But SOPHIE must also deal with time-variant information about the
Circuit since the circuit's state is constantly undergoing modifications
during the course of troubleshooting. It would be impossible to provide
SOPHIE with an explicit representation of all potential circuit states since
. there are an indefinite number of them. Instead SOPHIE has access to an )

implicit representation of all potential states: a model which simulates

the real circuit's behavior. When SOPHIE reguires informaticn about the
circuit in some specified condition, SOPHIE activates the simulation to
produce a circuit representation in the required state. SOPHIE then has at
its disposal a description of the modified circuit from which it may

gather the informa._on it needs. Grignetti et al., (1974) draw the following
analogy when observing how natural it is to use a 'simulation model in a

CAI application: "A person's data base is not only memo>y, and his 'retrieval
'routines' are not solely introspecti&c: he uses the world as a data base
andlggs senses-to retrieve information from it. I don't need to have in

my heid a representntion of what is behind my chair; if I need to know, I

<

can just turn around, look, and see!"

According to Brown, Burton, and Bell (1974), "the main seat of intglligence
in SOPHIE resides in its ability to draw conclusions and make inferences
- from setting up, running, and examining tne simulation model of its problem
domain." The availability of the circuyit simulation and heuristic procedures
which can interpret it is responsible for the succesé with which SOPHIE
handles the following communications: answers to questions about the state
of the circuit after some modification of the circuit, evaluations of student
hypotheses concerning th; equipment's fault, and suggestions of hypotheses

that‘the student might consider.

More generally, for subject domains amernable to such modeling, the use
of a simulation can equip a tutor with the means to make powerful inferences.
For domains of knowledge within which simulation models can be constructed,

"we can create ap artifically intelligent 'expert' system which can patiently
provide the student with a logically deep sounding board for his own ideas
(Brown, Burton, & Bell, 1974)." Subject areas within which simulation

models can be constructed include (Brown, Burton, & Bell, 1974):
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(1) programming, wherein one can simulate the exacution of a
program to understand how it works,
(2) areas of medical science within which physiological or

pharmacological processes can be modeled,

and (3) areas of engineering within which physical systems can be\modeled.

Work by Collins and associates suggests that powerful inferential
mechanisms may also be available in subject areas whose content is not
adaptable to partial or total representation by simulation models. These
investigators have developed procedures which search a semantic network
a la Carbonell in order to derive implicit facts consistent with or suggested

by the explicit information which the network houses. Collins ‘and associates

Carbonell's ééography tutor, now called GEC~SCHOLAR. They have also developed
SCHOLAR-like tutors of the ARPA network (Grignetti & Warnock, 1973) and a
text-editing éystem called NLS (Grignetti et al., 1974). Before discussing
the inferential procedures that Collins and coworkers have modeled, a descrip-
p;oﬁ of the purpose and appearance of SCHOLAR's tutoriél interaction will

be given. GEO-SCHOLAR is chosen to exemplify the family of SCHOLAR-like

tutors and will be the focus of our discussion.

sGEO-SCHOLAR can handle unanticibated student dialogue in a suSset of
Erglish which is constrained, fof the most part, by SCHOLAR's limited syntactic
capabilities. The content of the dialogue is dependent on student responses,
questions, and requests. SCHOLAﬁ uscs its semantic network to generate the

text it presents, the questions it asks, and the responses it constructs

to both its own questions and those posed by the student. SCHOLAR can call
upon programmed procedures to make several types of calculations and

inferences.

Figure 2 presents a sample protocol of an interaction with GEO-SCHOLAR.
It is taken from Collins and Warnock (1974).



Figure 2

A GEO-SCHOLAR-student interaction. The protocol was originally presented
in Collins and Warnock (1974). Statements entered by the student are
underlined.

WHAT IS THE LANGUAGE OF ARGENTINA?
PROBABLY SPANISH.

VERY GOOD. ‘
APPROXIMATELY WHAT IS THE AREA OF ARGENTINA?

*iELL ME SOMETHING ABOGT PERU.
PERU IS A COUNTkY IT IS LOCATED IN SOUTH AMERICA. THE CAPITAL OF PERU IS LIMA.
THE AREA OF ARGENTINA IS 1,100,000 SQUARE MILES.

3 APPROXIMATELY TRUE, BUT A MORE EXACT VALUE IS 1,200,000.
*  THE EﬁSTERN BORDERING COUNTRY OF PERU IS

CATHOLICISM.

# “WRONG. CATHOLICISM IS NOT A COUNTRY BUT A RELIGION. THE CORRECT ANSWER IS:
___BRAZIL. WHERE IS PERU?

WHAT IS THE MOST IMPORTANT DIFFERENCE BETWEEN PERU AND PARAGUAY?
THE PRIMARY DIFFERENCE IS: THE POPULATION OF PERU IS LARGER BY A FACTOR OF 7.8.

'
- t ¥

Collins and associates hgve attempted to extend SCHOLAR's information
base beyond that which is literally stored in the semantic network in order
to broaden both the range of knowledge about geography which SCHOLAR can
talk about and respond to, and the typés of knowledge SCHOLAR can effectively
teach. They began this effort by classifying the inférential strategies

used by people (Carbonell & Collins, 1973). Several of‘the strategies
identified have been implemented as procedures used by SCHOLAR (Collins &
Warnock, 1974; Collins, Warnock, Aiello & Miller, i975),

To illustrate the kinds of inferences SCHOLAR can make, several examples
will be descriﬁed. The examples are presented in a positive, fail safe
manner but the reader should keep in mind that the success of an inferencé
depends on the\presence and appropriéteness of facte in the network upon

which the inference rests.
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(1) When a property is not on the property list of a concept,
SCHOLAR can still deterﬁine whether the concept has the
property. For example, to, answer the question '"Does the
Llanos have a rainy season?" SCHOLAR first searches
through the information directly linked with the Llanos.
With the present data base, it finds nothing about a o
rainy season. It does find, though, that the Llanos is
a savanah. Searching through the property list of
"savanah', SCHOLAR finds that a savanah has a rainy
season. SCHOLAR then infers that the Llanos must also: % "

“

(2) SCHOLAR can determine whether a question is true or
»false. For example, to answer the -question "Is Bolivia
a capital?" SCHOLAR observes that Bolivia is a country
and that a capital is-a city. It also ha; stored the
fact that a city and a country are different kinds of

places. Hence SCHOLAR answers 'mo".

(3) SCHOLAR can determine the agricultural products or climate
of‘a geographical region. For example,’to“answer the
question'"Is the climateé of Buenos Aires subtropical?' SCHOLAR
first checks the property list of Buenos Aires but finds
no mention of it being subtropical. ‘SCHOLAR then attempts
to locate a city which is subtropicai. It finds Caracas.
SCHOLAR then checks whether the latiEude and longitide of
Caracas are similar to those of Buends Aires. They are
not. SCHOLAR infers that it is unlikely that Buenos Aires
is éubcropical.

Tha2 strategy SCHOLAR employs to answer questiéns
about products and climate depends on SCHOLAR's endowment

of knowledge about the determinants of products (climate, |

rainfall, and soil fertility) and climate (longitude and
latitudej. It also depends on the general, and §ometimes
misleading, rule that if certain criteria of similarity
are met between two situations then a result that pertajins

to the first pertains to the zecond.




- 12 -

U31ng inferences like those illustrated above, SCHOLAR can now talk
about informarion that is not explicitly stored in the network. This
power nas greatly enhanced the system's ability to interact with students
both,bﬁ enlargening the range of student inputs it can intelligently"

address and by increasing the depth of its responses.

The networks used by SCHOLAR and SOPHIE are instances of a class of
structures knewn as semantic networks. As the name implies, a semantic
network attempts to represent the meaning of facts. Typically links
associate the facts into a totally connected structure. In the case of

SCHOLAR, for example, attributes can be thought of as the links of tﬁE\\\\\

network. Other examples of semantic networks can be found in the works
or Anderson and Bower (1973), Norman and Rumelhart (1975), and Simmons \\\\\\\\\\\——

(1973), while a discussion of fundamental issues is presented by Woods
(1975) . '

i a

{

The work of Norman and Rumelhart (1975) (and also the work of Anderson
and Bower, 1973) on semantic networks is .the producr\qf an attempt to model
numan memory. Because of this, a discnssion of the Norman—Rumelhart,model

‘ will be given in the next section on modeling the learnetr. However we
would like to briefly discuss at this point an extensionypf their modeling

effort into the realm of representing complex subject matter.

Semantic networks as typically designed readily represent factual know-
ledge, but confront a more difficult problem in attemptlng to model the
higher level conceptualizations which exist in most subject\areas. For example,
"it is easy to represent that General Grant smoked cigars or| that the Amazon
River had'numerous tributaries, but not easy to represent that the North's
plan of action in the Civil War was to cut off the South fron\external
supplies, and that this plan motivated Lincoln to keep a major segment of
R troops at Cairo, Illinois and St. Louis, and thaty it eventually led Grant

to cut off the Tennessee and Cumberland rivers (Norman, 1976).?

Drawing from work Ey Rumelhart (1975, 1976) on representing simple
stories, Norman and Rumelhart (Norman, 1976) are developing a scheme .to
represent complex episodes, like the Cfbil War episode given above. A
tutor of history is presently under development by these investighators
that will provide a vehicle within which their representation ideas can
be implemenred and evaluated. Although the resulting model will apply

v
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directly to historical narratives, its development may also provide some

understanding of how to structure the cowmplex interrelations which comprise

|
, Modeling the Learner's State of Knowledge

\

As was suggested in the previous segtion, if a CAI program has access

other subject areas.

to information that endows it with some équect matter expertise, dec;sions
about what material to present can be made qynamlcally as the student
progresseé through the course. Tutor-tutee dialogue thus has the potential'
to be keyeé\to the needs of the student. But a model of its subject domain.
provides only part of the data the tutor may require to respond adaptively
to the student; the tutor may also require information about the student.

As Norman (1973) has noted, without a model og the knowledge of its

student, a computer based system that supports irteractive dialogue has

only reached the stage of egocentric intellectual development.

Three kinds of models of the learner which.may be implemented within
a ‘tutor will be illustrated. They diffgr primarily in how they function
within the tutor. We discuss first models employed by the tutor to
diéénose student errors. Suéh models typically depend on taxonomies of errors
the student may make. We diséuss next models employed to record what the
studeAQ has learne& about the subject area. Such models typically depend on
explicit representétions of those parts of the subject matter the student has
mastered. And finally, we discuss models employed to determine the manner in
which information should be presented. Such models are typically operational \

statements of how students acquire knowledge.

r

Models Used Fer Diagnosit’zs
Assuming a student's .nswer to a question requires intermediate
steps for its derivation, when the answer is wrong the tutor can choose N
to attend tc the answer, its derivétion,‘or both. For example, if the

tutor acknowledges that the answer is incorrect and provides the right

answer, the tutor has attended to the product--the answer. On the other .
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hand, attention to the derivation is achieved if the tutor indicates faults
in the student's reasoning or begins to question the student about the

manner in which he arrived at his answer.

The tutor can attend to the derivational process without concern for
the particular proces§ employed by the student. For example, Wegler's
(1970) geography tutor responded to a student's incofrect responses by out-
putting the derivational path the computer would hgbe considered had
it been asked the question. But this form of reme@iation is not tailored

to the weaknesses of the student.

If remediation is to be keyed to the student's derivational”prog%ss,
the tutor must turn to procedures which recognize faults in the studeﬁt's
reasoning. The ﬁrocess of reéognizing faults is complicated by the fact
that it is often unnatural for a student to detail every step he has
taken to arrive at his answer. Hence the procedurés may hafe to infer
mistakes in reasoning from a, perhaps, sketchy account of the steps the
student has taken. Whatever inference strategies are emploved though, the
process of diagnosing student faults is likely to depend on the presence
within the- system of a taxomcmy of potential errors the student may make

(Carbonell, 1970b; Siklossy,. 1970).

Brown and coworkers employ taxonomies in both a tutor Which provides
guidance while a student plays a game (Burton & Brown, 1976) and a tutor
which provides guidance while a student solves élgebraic equations
(Brown, 1975a, b). The game tutor points out weaknesses in the strategy
a student employs to play the PLATO game "How the West Was Won",* a
game supporting drill and practice in elementary arithmetic. The algebra

tutor helps a student acquire algebraic skills by presenting him with -

\

\problems and providing him with feedback relating to his solutions of the

"problems.

AN

\ ‘

%
This game was written by Bonnie Anderson for the PLATO Elementary
Mathematics Project.

«
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The aléebra tutor bases its diagnostics of problems incorrectly solved
on a taxonomy of errors which reflect universal kinds of misunderstandings
related to algebraic manipulations. A subset of the taxonomy the tutor uses
is given in Brown.(1975a). The taxonomy used by the game tutor is not really
a taxonomy of errors, but a taxonomy of strategies or basic operations the
student may employ to play the game. The diagnostic ﬁodule calls on this
taxononfy of strategies to note what operations the student employs-in his
moves and what operations the student could employ to improve his game.

In both tutors, remediation is based on weaknesses which the diagnostic pro-

cedures uncover.

2

Both tutors rely on records of past pevformance to more accurately de-
termine the weaknesses in a student's performance. Student histories are
used to cope with the difficulty suggested earlier, namely the difficulty
‘in inferring ﬁadits based on only a few isolated student inputs.. In the

game tutor, a student's single move typically does not provide enough
information to conclude that he is unaware of some basic strategy that

would improve his game., The game tutor calls upon a summary of the student's
previous moves to aid in the inference of deficiencies. Similarly, in iEs
attempt to ascertain the improper operations the student has used to solve

a problem, the algebra tutor turns to a summary of jproblem solving techniques
presently in the student's repertoire. Included in the summary are both the
legitimate, heuristically sound transformations known to the student and the
illegal br counter productive transformations he has employea\gnd may

employ again. . AN .

\\

Models Used To Record Student Knowledge

The summaries used by Brown's tutors to aid in diagnosing student
weaknesses are instances of models which record the state of a student's
knowledge. In the case of the game tutor ‘the student's state of knowledge
is defined by his repertoire of strategies; in the case‘of the remedial
algebra tutor, the student's state of knowledge is defined by his repertoire
of algebraic manipulations. Models which reflect a student's present under-
standing of the subject area can provide data influencing a number of
tutor activities, such as decisions concerning what to teach next or the depth

of remediation. Such models can be used to structure the tutor's explana-

rions-"tH terms familiar to the student. Theéy can also provide data pertinent

21 )




e
-

}
1

- 16 -

to determining why a student has asked a specific question, or, as we have
seen in the section on diagnostics, determining why a student has incorrectly

answered a question.

As in research on modeling the subject matter, a variety of structures
which model the student's present state of knowledge hase been proposed.
lndeed, the two modeling efforts are intimately connected. Methods used
to model the subject matter may be applicable to modeling the student's
state of knowledge. For exéﬁple, Self (1974) has proposed that some forms
of knowledge can be readily represented as programs. While the representation
of the subject domain can consist of programs which, when computed, result
in the "ideal" answers, those which model the student produce answers which

match those the student would supply.

The model of the subject area itself may provide a natural depository
for data regarding what the student has learned. Both Wexler (1970) and
EarBonell (1970a, b) suggested flagging their networks in order to keep track
of areas the student had mastered. Atkinsoﬁ and associates have also taken

this approadﬁ in their tutor of BASIC known as BIP (Barr, Beard, & Atkinson,

'1975a, 1975b; Beard, Barr, Fletcher, & Atkinson, 1975).

BIP (BASIC lpstructional‘grogram) is an interactive problem-solving
laboratory that offers tutoriél assistance to students solving introductory
programming problems. The system is a stand-alone, fully selI—contained‘
course in BASIC ?rogramming. The emphasis of the course is on solving
programming problems. (To this end students arerpresenced a series of
programmiﬁg.problems which they solve on-line. As the student develops a
program he is directed to appropriate sections of a hard-copy manual which
explains such things a ASIC statements and programming struétures. The
student isggl;o encouraged to use numerous on-line student-oriented featufes

such as ihteractive debugging facilities'and help options.

To aid in decisions concerning the sequencing of programming problems,

¢ BIP calls upon a Curriculum Information Network (CIN). A CIN is a

structured representation of the curriculum which consists, in part, of the

problems or tasks the tutor may present to the student, linked to the basic
skills required for successful completion of the problems. BIP uses this

network, to flag the skills its student has mastered. Presently each skill
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is tagged with an array of counters which note the student's state of

acquisition of the skill. The counter values are determined by the
student's ability to complete programming problems which require the

skill and the student's own assessment of his mastery.

hodels of the Process of Acquisition

Models of how students acquiré knowledge are basic to the understanding of
how information should be presented. If operational models were available,
the tutor would have a powerful means for determining the structure of its
tutorial interaction. In the area of paired-associate learning, a variety
‘of mathematical models exist which describe probablistically how information
i§ gcquired (Fletcher, 1975}, and, thus, suggest how content should be
presented. But for mﬁre complex learning adequate operational statements
are lacking. The majority of published work related to the learning process,
while intellectually rewarding, is of little assistance in defining precise
models., But, progress on this front is being made by Norman and associates

at the Center for Human Information Processing at the University of California.

.

Norman and associates are epgaged in modeling human memory. Their work

has recently been described in the collection of papers: Explorations into

"Cognition (Norman & Rumethart, 1975). At the foundation of the memory model
employed by Norman et al. is a set of general functions which specify the
relations which exist among subsets of concepts. The scheme for functional
representation of related cbncepts borrows heavily from Fillmore's (1968)
notion of "case grammar" in that it assigns particular roles éZ the concepts

of a proposition. ' o

The investigators are attempting to determine a primitive set of
general functions so that all propositions can be expressed in terms of
some subset of these more basic relations. So far their work has concentrated
on describing functions that correspond tg the meanings of verbs and the

primitives which underlie verbal structures.

To illustrate the type of model Norman and coworkers are exploring
we will consider the verb ''give'. The meaning of ''give" that correséonds
to one person placing an object in the possession of another person is
represented by the following function: \

give [agent, object, recipiencﬁ time]

23




The arguments of the function suggest the set of restrictions that apply

to the values that can be used to fill the arguments. Thus the first

argument--agent--denotes an animate being capable of instigating the_ actiom.

This meaning of "give" can be further analyzed by considering the primitive

notions which underlie the action, such as the notion of one event

Causing another and the notion of an object being transferred from some

source to some goal.

The memory system Norman and coworkers have proposed adapts readily to

a variety of cognitive tasks, including information acquisition (Rumelhart &

Norman, 1975), language comprehension (Rumelhart & Levin, 1975) and

problem solving (Eisenstadt & Kareev, 1975). It is not vet known whether

the structures and processes modeled parallel bhuman structures and processes,

but ‘the success of the model should encourage research in this area. Norman

and associates have already pursued some research along this line (e.g., )

ngtner,‘1975).

AN

» Mgdeling Teaching Strategies

CAT tutors in which the coding of procedures which control the

flow of the instructional intefraction is distinct from other modules of

the tutor, such as the student or subject matter models, provide convenient

tools for exploring various teaching scenarios. Typically the outward behavior

of these tutors can be completely redesigned in just a matter of days. Hence

the instructional researcher has at his disposal a well-controlled laboratory

within which to model instructional strategies, implement the models, and

compare their results in terms of learning achievemert. .

Separate control procedures exist in varying degrees in the systems

being explored at BBN by Brown and Collins and in Atkinson's tutor of BASIC,“

BIP. Investigations concerned with isolating optimal instructional strategies

are being pursued at both sites.

Collins and associates have engaged in modeling teaching strategies for

their tutor of geography, GEO-SCHOLAR (Collins, 1976; Collins, Warnock &

Passafiume, 1975). To isolate teaching strategies employed by human tutors,

Collins and coworkers analyzed human tutor-tutee teaching sessions. Based

on these analyses Collins and associates have proposed several hypotheses

about how the tutor relates his teaching to the individual student. The

24
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investigators have implemented some of these hypotheses as strategies which
GEO-SCHOLAR can incorporate into its tutorial interactlions. Experiments have
been conducted to define those characteristics of i.plemented strategies which

facilitate learning relative to a frame-oriented tutorial (Collins, 1974),

Research suggested by Brc /n and coworkers (e.g., Brown, 1975b; Brown
& Burton, 1975) using tutors of problem solving like SQPHIE and the cemedial
algebra tutor promisés to provide data concerning optimal strateéies for
TS teaching problem-solving techniques.' Because of the computer's ability
to search a solution space much more efficiently and effectively than can
2 human tutor, some strategiés which can be studied easily in these problem-
solving laboratqries would be difficult, if not impossible, to model and

evaluate in a noncomputerized setting.

Atkinson and his coworkers at the Institute for Mathematical Studies
in the Social Sciences are exploring theruse of curficulum networks to
provide data for strategies which sequence instruction. By investigating
problem sequencing as a function of student progress in skill acquilsition,
an attempt is being made to model optimal instructional sequencing strapegies

over the network (Barr, Beard, & Atkinson, 1975b). * :

N b 1 &7

CONCLUSIONS

The military must train a large, heterogeneous student population.
Because the population is so varied, adaptive instructional environments
are required for many training objectives. Because of the large number of

v

students involved, such environments cannot be provided using labor intensive

traditional approaches. By providing knowledge concerning the development
of responsive automated tutors, ARPA supported projects have addressed these

issues.

One large training area where cost-effective applications of responsive

103

tutors seems most promising is tutorial simulations of laboratory situations.
The traditional laborétory has severe limitations. Instructors may not have
the time to adequately pursue a student's hypotheses or questions,lor
evaluate his procedures; in laboratories requiring measurements, a student's
time may be ineffectually lost in preparations which add little to the ‘
training experience. If expensive equipment is beiag used or expended, as
in combat training, the cosfs of training may severely comstrain its effec-
tiveness. Responsive CA; ﬁromises to eliminate these threats to learning

effectiveness while possibly decreasing training costs by providing an environment

- . 25
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in which the Student may manipulate, with "expert" supervision, a

computer model of the system under investigation.

As test beds for instructional research, the systems developed by ARPA
suppofted programs will aid in isolating software capabilities which
faci}itate training objectives. Work musc theh turn toward generalizing
these capabilities to insure tﬂeir transportability to other CAI environments.

Also, as vehicles for instructional research, the. systems will aid in

~ identifying and rigorously defining optimal instructional strategies, thus

providing guidelines for authors of CAI materials.

TRENDS
Advances in natural 1anguage‘comprehénsion will facilitate both the
studeﬁt—syéfem and author-system interfaces, a@?, in turn increase the

range of training objectives which can be achieved in a CAI environment.

As a CAI system becomes less responsive’ to natural language input,
the number of extraneous skills a student must develop to interact with the
program increases. &he syntax of acceptable input statements becomes more
prescribed, the semantics more gonstraiﬁed. In the framework of CAI, research
in natural language processing will reduce interaction difficﬁlties by
decreasing the extent to which a stﬁdent must process the system's
language while increasing the extent to which the system processes the
student's. Also because a broader range of student i.e5ponses will be
"querstood? by the computer, the{extent to which the system ;uthor must
anticipate and constrain student inputs will decrease, encouraging the

development of more sophisticated training environments.

By providing the system author with the opportunity to interact with
the computer in natural language, the time needed to create CAIL materials
and the system limits imposed on those materials by programming language
constraihté will decrease, Presently much tiﬁ;.is invested in learning
programming skills and format conventions. The programming of complex
CAI materials requires cohsiderable programming experience and, hence, the
availability of expert programmers. By providing the CAI author with a
more natural interface, time needed to learn computer conventions and

dependence on expert programming skills will decrease.

-
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The capabilities being deveioped in responsive CAI -tutors will be of
value as$ job-performance aids. For example, BIP's student-program
interpreter contains debugginé aids that woul& be of assistance to
‘programmers outside of the classroom environment (Barr & Beard, 1976).
Also the simulation models developed fpr responsive futors may be usefulk
to authors of more traditional drill-and-practice or tutorial programs.
Such models can quickly provide the author with data which would be

time-consuming to collect by otherimeans.
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